如何正確選擇射頻微波濾波器
微波濾波器是用來分離不同頻率微波信號的一種器件,是一種分離或組合各種不同頻率信號的無耗二端口網絡,它在微波通信、雷達、電子對抗及微波測量儀器中都有廣泛的應用。用來抑制不需要的信號, 使其不能通過濾波器, 只讓需要的信號通過。在微波系統的設計中,微波濾波器具有非常重要的地位。
微波濾波器的發展歷程
1915 年,德國科學家 K.W.Wagn-er 開創了一種以“瓦格納濾波器”聞名于世的濾波 器設計方法,與此同時,在美國,G.A.Canbell 則發明了另一種以圖像參數法而知名的 設計方法。1917 年,兩國的科學家分別發明了 LC 濾波器,次年美國第一個多路復用系 統面世。從此許多科研人員開始積極地和系統地對采用集總元件電感和電容的濾波器設 計理論的研究。 隨著濾波器設計理論的深入研究、材料領域的不斷進步及工作頻率的日益升高,濾 波器設計由原先的集總參數元件濾波器逐漸擴展到分布參數元件濾波器。1939 年, P.D.Rich-temeyer 報道了介電濾波器,由于當時材料的溫度穩定性不高使用該種濾波器 不足以實際應用。20 世紀 70 年代以來,隨著陶瓷材料的發展,介電濾波器的應用得到 了迅速發展。近年來,小型化的趨勢促進了各種類型微帶濾波器的發展。20 世紀 80 年 代,出現了高臨界溫度超導材料,被認為有可能用于設計出低損耗和小尺寸的新穎微波濾波器。目前,高溫超導濾波器已逐步使用在軍事和商業領域。
從基礎開始
在不了解會受到何種損害的情況下,具備高深的數字電子知識的設計師發現,當需要給無線器件確定濾波器參數時,急需復習射頻基礎知識。
在當今無線領域,激烈的擴展帶寬的競爭迫使人們要更加關注濾波器的性能。如果對濾波器參數確定不準確,會導致頻率沖突,反過來使設計組又得處理串擾、掉線、數據丟失以及網絡連接中斷的問題。
濾波器定義不完整或不準確這一問題產生的部分原因是目前電子市場對數字電子很熱衷。根據某些統計,80%~90%的新電子設計工程師都是軟件和數字方面的。知識缺口就在于此,因為不管傳輸的信息是否是數字形式,當信息通過無線電或微波傳輸時,載波信號總是遵守電磁學物理定律。
所幸的是,對濾波器性能參數的某些重要基礎進行快速重溫,可幫助工程師正確找出滿足特定應用的濾波器。開始時如果選擇正確,則能節省時間和金錢,在訂購這些必不可少的元件時就能確保價廉物美。
1.了解基本響應曲線
濾波器的基本響應曲線包括:帶通、低通、高通、帶阻、雙工器,如圖1A-1F所示。每一個特定形狀都決定了哪些頻率可以通過,哪些不能通過。
無疑,這一組中常見的是帶通濾波器。所有工程師都知道,帶通濾波器允許兩個特定頻率之間的信號通過,對其它頻率的信號進行抑制。例如聲表面波濾波器(SAW)、晶體濾波器、陶瓷和腔體濾波器。作為參考,Anatech Electronics 公司制造的腔體帶通濾波器的頻率覆蓋范圍為15 MHz~20 GHz,帶寬在1%~100%范圍。下表給出了Anatech Electronics公司的集總元件帶通濾波器的全部技術參數。所有制造商都采用了用濾波器中心頻率兩邊0.5 dB、1 dB或3 dB衰減點定義通頻帶的方法。
2.包括所有必要的技術參數
經常出現這一情況,工程師給出一個需要“一個100 MHz帶通濾波器”的簡短要求,這一要求顯然信息量太少了。濾波器供應商實在難以根據這么點信息就簽單。
給出所有必要的信息從詳細給出所有頻率參數開始,如:
中心頻率(Fo): 通常定義為帶通濾波器(或帶阻濾波器)的兩個3 dB點之間的中點,一般用兩個3 dB點的算術平均來表示。
截止頻率(Fc):為低通濾波器或高通濾波器的通帶到阻帶開始的轉換點,該轉換點一般為3 dB點。
抑制頻率:信號衰減某些特定值或值的集合的特定頻率或頻率組。有時定義理想通帶之外的頻率區為抑制頻率或頻率組,所經過的衰減稱為抑制。
濾波器類型決定了特定頻率。對帶通和帶阻濾波器,特定頻率為中心頻率。對低通和高通濾波器,特定頻率為截止頻率。
為了完整起見,工程師還應定義下列特性,如:
阻帶:濾波器不傳輸的特定頻率值之間的頻率帶。
隔離:雙工器中,考慮接收(Rx)通道時為抑制傳輸(Tx)頻率的能力,考慮傳輸(Tx)頻率時為抑制接收(Rx)頻率的能力,稱為Rx/Tx隔離。隔離度越高,濾波器能夠將Rx信號與Tx信號隔離開的能力就越強,反之亦然。其結果是傳輸和接收信號都更加干凈。
插入損耗(IL):表示器件中功率損耗的一個值,IL =10Log(Pl/Pin),與頻率無關,其中Pl為負載功率,Pin為從發生器輸入的功率。
回波損耗(RL):為濾波器性能的一種度量,表示濾波器輸入和輸出阻抗接近理想阻抗值的程度?;夭〒p耗定義為:RL = 10Log(Pr/Pin),與頻率無關,其中Pr為反射回發生器的功率。
群延遲(GD):群延遲表示器件相位線性的大小。由于相位延遲出現于濾波器的輸出端,了解這種相移隨頻率的變化是否為線性很重要。如果相移隨頻率非線性變化,輸出波形將發生畸變。群延遲定義為相移隨頻率變化的導數。因為線性函數的導數為常數,所以線性相移引起的群延遲為常數。
形狀因子(SF): 濾波器的形狀因子通常為阻帶帶寬(BW)與3 dB帶寬的比值。它是濾波器邊緣的陡峭程度的一種量度。例如,如果40 dB帶寬為40 MHz,3 dB帶寬10 MHz,則形狀因子為40/10=4。
阻抗:以歐姆為單位的濾波器源阻抗(輸入)和端接阻抗(輸出)。一般情況下,輸入阻抗和輸出阻抗相同。
相對衰減:測到的小衰減點處衰減與理想抑制點的衰減的差異。通常,相對衰減以dBc為單位表示。
紋波(Ar):表示濾波器通頻帶平坦度的大小,一般以分貝表示。濾波器紋波的大小影響回波損耗。紋波越大,則回波損耗越嚴重,反之亦然。
抑制:同上。
工作溫度:濾波器設計的工作溫度范圍。
3.不要追求不切實際的濾波器特性
工程師有時會提出如下的要求:“我需要通頻帶為1,490~1,510 MHz,1,511 MHz處的抑制大小為70 dB?!边@一要求無法實現。實際上,抑制是逐漸變化的,不是90°急劇下降,更實際的參數為偏離中心頻率約10%。
另一個情況是要求濾波器例如“抑制1,960 MHz頻率以上的所有成分?!边@時,工程師必須意識到不可能衰減該抑制頻率直到無限高頻率之間的所有頻率。必須設置某些邊界。更現實的方法或許是,將通頻帶附近的特定抑制頻率衰減兩到三倍。
4.爭取實現合理的VSWR
常使用電壓駐波比(VSWR)表示濾波器的效率,為一比值,大小在1到無窮大之間,用來表示反射能量的大小。1表示所有能量都無損耗通過。大于1 的所有值都表示有部分能量被反射,即浪費了。
但是,在實際的電子電路中,1:1 的VSWR幾乎不可能達到。通常,比值1:5更實際一些。如果要求達到的值小于該值,則會降低效益成本比。
5.考慮功率處理能力
功率處理能力為以瓦為單位的額定平均功率,超過該值則濾波器性能會降低或者失效。此外還需要注意,濾波器的尺寸在某種程度上決定于其功率處理能力的要求。一般地,功率越大,則濾波器所占電路板面積越大。制造商,如Anatech,一直致力于使用新型算法來滿足這些挑戰性的利益需求,預先在算法上作規劃能節省成本。
6.同時、雙向通訊中的隔離因素
隔離是雙工器的一個特別重要的方面,從接收通道看時,隔離表示濾波器抑制傳輸頻率的能力,反之亦然。隔離越大,則兩者分得越開,傳輸信號和接收信號就越干凈。
7.注意作出取舍
性能越高則成本越高。這正是為什么需要準確定義的原因,因為準確定義可以減少不需要的極端情況,因而能夠避免不必要的費用開支。
除此之外,對其他因素也需要互相權衡。例如,抑制頻率與中心頻率越接近,則濾波器越復雜,這有時會造成插入損耗更大。
另外,濾波器性能越高通常使其占板面積越大。例如,從通頻帶到抑制的非常陡峭的轉變需要具備更多腔體和段數,使濾波器更復雜。但是如果電路板費用很重要,則性能有時必須有所削減。
8.尋找可以在各種要求之間作出平衡的制造商
雖然濾波器銷售商與濾波器性能的固有特性無關,但選擇濾波器銷售商時,還是需要像關注元件本身要求一樣對此予以關注。一個穩定的專門生產濾波器的制造商,能時常生產出特定部件來彌補產品設計缺陷。