<b id="9makf"></b>
<u id="9makf"><address id="9makf"></address></u>
  • <source id="9makf"><mark id="9makf"><div id="9makf"></div></mark></source>
    <var id="9makf"></var>

    <b id="9makf"><p id="9makf"></p></b>

      歡迎光臨德州安盾電子有限公司網站!
      熱點產品:
      液晶屏全貼合屏蔽玻璃,液晶屏全貼合觸摸屏,電磁屏蔽帳篷,觸摸屏
      技術論壇

      電源紋波調試,這樣做就行了!

      來源: 時間:2022-04-20 16:15:02 瀏覽次數:

      在大多數電子系統中,降噪是一個重要設計問題。與功耗限制、環境溫度變化、尺寸限制以及速度和精度要求一樣,必須處理好無所不在的噪聲因素,才能使最終設計獲得成功。

      這里,我們不考慮用于降低“外部噪聲”(與信號一起到達系統)的技術,因為其存在一般不受設計工程師直接控制。相比之下,防止“內部噪聲”(電路或系統內部產生或耦合的噪聲)擾亂信號則是設計工程師的直接責任。今天我們就說說“接地”,而且是針對高頻工作的“接地"
      接地”(Grounding)一般指將電路、設備或系統連接到一個作為參考電位點或參考電位面的良好導體上,為電路或系統與“地”之間建立一個低阻抗的通道。地線是作為電路或系統電位基準點的等電位體,是系統中各個電路的公共導體,任何電路的電流都會經過地線形成回路。然而,任何導體都存在著一定的阻抗,當地線中有電流通過時,根據歐姆定律,地線上就會有電壓存在,那么地線就不是一個等電位體。所以在實際設計電路或系統時,關于地線上各點的電位一定相等的假設就不是成立的,實際的情況是地線上各點存在電位差,有的電位差還可能很大。地線的公共阻抗會使各接地點間形成一定的電壓,從而就會產生接地干擾。

      如上面所說,地線作為導體,存在一定的阻抗,顧名思義,阻抗也就是由電阻和感抗兩部分組成,即:

      導體的阻抗是頻率的函數,隨著頻率的升高,阻抗增加很快。對于高速數字電路而言,電路的時鐘頻率是很高的,脈沖信號包涵豐富的高頻成分,因此會在地線上產生較大的電壓,則地線阻抗對數字電路的干擾十分可觀。
      在電子產品的PCB設計中,抑制或防止地線干擾是需要考慮的最主要問題之一。所謂干擾,必然是發生在不同的單元電路、部件或系統之間,而地線干擾是指通過公用地線的方式產生的信號干擾。注意這里所提到的信號,通常是指交流信號或者跳變信號。地線干擾的形式很多,有人把它歸結成兩類:地線環路干擾、公共阻抗干擾,其實應該還要加上地線環路的電磁耦合干擾,因此是三類。下圖可以很好的說明三類地線干擾的成因。


      一、地環路干擾。
      橫向,每根導線上的電流不同,因此會產生差模電壓,對電路造成影響。具體的說就是“其他電路單元B”的地線電流,在J、N、L、M形成的“地線環路”中,對放大器A1和A2造成了影響。由于這種干擾是由電纜與地線構成的環路電流產生的,因此成為地環路干擾。
      二、地環路電磁耦合干擾。
      在實際電路的PCB上,J、N、L、M形成的“地線環路”將包圍一定的面積,根據電磁感應定律,如果這個環路所包圍的面積中有變化的磁場存在,就會在環路中產生感生電流,形成干擾??臻g磁場的變化無處不在,于是包圍的面積越大干擾就越嚴重。
      三、公共阻抗干擾。
      認真考察上圖所示的電路結構,我們將發現,J、N、L、M中,有一條連接是多余的,隨便去除其一,仍然可以滿足各個接地點的連通關系,同時又可以消除地線環路。那么,將哪一條連線去除比較合理呢?這時就要考慮另一類的干擾問題——公共阻抗干擾。
      去除J:這是最差的方案。J去除后地線環路似乎消失了,可是另一個更可怕的環路又形成了(I、N、L、M),其中I是信號線,因此干擾比原來有線J時還要嚴重。
      去除M:環路消失,但是我們發現,此時放大器A2的地線電流需要流過J、N到達接地零點,注意N段是A1和A2共同的接地線,因此A2接地電流在N上形成的電壓降就加到了A1上,形成干擾。這種因共用一段地線而形成的干擾稱為“公共阻抗干擾”。
      去除L:不僅不能解決A2與A1之間的公共阻抗干擾問題,還引起了“B單元電路”與A1、A2之間的公共阻抗干擾問題。
      去除N:看來這是最后的方法。其實這樣做將使M成為A1、A2的“公用阻抗”,同樣形成干擾。還是存在問題!但是,我們注意到,此法中的干擾是A1對A2的干擾,A2是后級,工作信號強度遠大于A1,因此A1對A2的干擾,很難造成不良后果。
      最合理的走線方案是:去除N,然后將M的下端直接連到“接地信號零點”上。
      以上是關于接地干擾產生的原因,下面再介紹的幾種常見的接地方式,結合前面對接地干擾產生原因的了解,有助于我們在實際設計PCB板電路時,正確的選擇干擾最小的接地方式,設計出合理的電路或系統。
      信號接地方式可以大體上分為:單點接地、多點接地、混合接地和懸浮接地。單點接地。單點接地就是把真個電路系統中的某一點作為接地的基準點,所有電路及設備的地線都必須接到這一點上,并以該點作為電路、設備的零電位參考點。單點接地又分為串聯單點接地和并聯單點接地。如下圖所示:


      圖2.串聯單點接地

      對于串聯式單點接地方式,如果該電路的功率很大,會產生很大的電路回流,在有限阻抗上會產生一個電壓降,造成電路和基準地之間的電壓參考值的差異可能使系統不能如預期的那樣工作。如存在多種不同功率等級的電路,不能采用串聯式單點接地方式,因為大功率電路產生大的回地電流,將影響低功率器件和電路。如果說一定要采取這種接地方法,那么最敏感的電路必須直接設置在電源輸入位置處,并且盡量遠離低功率器件和電路。串聯單點接地方式和結構都比較簡單,如果各個電路的接地引線比較短,其阻抗也會相對小。如果各個電路的接地電平差別不大,可以采用這種接地方式。

      并聯單點接地方式中,每個電路單元獨用地線連接到同意地點,其優點是各電路的地點為只與本電路的地電流及地線阻抗有關,不受其他電路的影響。低頻時可有效的避免各電路單元之間的低阻抗干擾,但是也存在很多缺點。主要表現在:首先,各個電路分別采用獨立地線接地,需要多跟地線,勢必增加地線長度,從而增加地阻抗,結構復雜使用麻煩;其次,這種接地方式會造成各地線互相間的耦合,并且隨著頻率增加,地線阻抗、地線電感、電線電容都會增大,這種接地方式不適用高頻電路。
      多點接地。多點接地是指某一個系統中各個需要接地的電路、設備都直接接到距離它最近的接地平面上,一邊接地長度最短,接地阻抗減到最小。


      當電子系統的工作頻率高于1MHz時,以致工作波長與系統接地引線的長度可比擬時,地線就象一根終端短路的傳輸線,地線的電流、電壓呈駐波分布,地線變成了輻射天線,而不能起到地線的作用。為了減少接地阻抗,避免輻射,地線的長度應小于1/20波長,因而單點接地方法是不合理的,通常采用多點接地技術。多點接地電路結構簡單,接地線上可能出現的高頻駐波現象顯著減少,但多點接地可能會導致設備內部形成許多接地環路,容易對設備內部的敏感店里產生地環路干擾。
      一般來說,頻率在1MHz以下時可采用單點接地方式,頻率高于10MHz時可采用多點接地方式,而頻率在1——10MHz時,通常采用混合接地方式。
      混合接地。混和接地是單點接地和多點接地的復合。在PCB 中存在高低頻混合頻率時,常使用這種接地方式。


      圖5和圖6提供了兩種混和接地方法。對于電容耦合型電路,在低頻時呈現單點接地結構,而在高頻時呈現多點接地狀態。這是因為電容將高頻電流分流到了地。這種方法成功的關鍵在于清楚使用的頻率和接地電流預期流向。在接地拓撲結構中使用電容和電感,使我們能用一種優化設計的方式控制射頻電流。通過確定射頻電流要通過的路徑,可以控制PCB 的布線。對射頻電流回路缺乏認識可能導致輻射或敏感度方面的問題。
      懸浮接地。懸浮地是指設備的地線系統與殼體構件的接大地系統在電氣上相互絕緣,以防止殼體構件中的電磁干擾傳導到設備中去。但是,由于設備不與公共地相連,故懸浮接地容易在兩者之間造成靜電積累,當電荷積累到一定程度后,在設備與公共地之間的電位差可能引起劇烈的靜電放電,產生干擾放電電流。懸浮接地不適用于通信系統中。
      了解了以上的內容,那么在實際的BCB板的印刷中,要以上面的理論依據為基礎對地線進行合理布局。在對地線布局時,通常要注意以下幾點:一、數字地與模擬地要分開;二、數字電路地線不要構成閉合環路;三、多層PCB中,盡量將地線層和電源層放置在相鄰的層中;四、地線、電源線和信號線寬度設計要合理。以上這些注意點,要在實際操作中慢慢研究體會。        在進行高速電路設計時,合理的接地設計是最有效的電磁兼容設計技術。據統計,90%的電磁兼容問題是由于布線和接地不當造成的。好的布線和接地既能夠提高抗擾度,又能減小干擾發射,同時也有可能再成本較低的情況下解決許多電磁干擾問題,所以在進行高速電路的PCB板設計時,合理的設計接地至關重要。         
      一般提倡電源和信號電流最好通過“接地層”返回,而且該層還可為轉換器、基準電壓源和其它子電路提供參考節點。但是,即便廣泛使用接地層也不能保證交流電路具有高質量接地參考。
      圖1所示為簡單電路采用兩層印刷電路板制造,頂層上有一個交直流電流源,其一端連到過孔 1,另一端通過一條 U 形銅走線連到過孔 2。兩個過孔均穿過電路板并連到接地層。理想情況下,阻抗為 0,電流源上的電壓為 0 V。


      這個簡單的原理圖遠不能反映真實的情況,但了解電流如何在接地層中從過孔 1 流到過孔 2,將有助于我們看清實際問題所在,并找到消除高頻布局接地噪聲的方法。
      電感與電流環路的面積成比例,二者之間的關系可以用圖 2 所示的右手法則和磁場來說明。環路之內,沿著環路所有部分流動的電流所產生的磁場相互增強。環路之外,不同部分所產生的磁場相互削弱。因此,磁場原則上被限制在環路以內。環路越大則電感越大,這意味著:對于給定的電流水平,它儲存的磁能更多,阻抗更高,因而將在給定頻率產生更大電壓。


      圖2. 磁力線和感性環路
      在圖中所示的簡單例子中,面積最小的環路顯然是由 U 形頂部走線與其正下方的接地層部分所形成的環路。圖 3(左)則顯示了大多數交流電流在接地層中選取的路徑,它所圍成的面積最小,位于 U 形頂部導線正下方。實際應用中,接地層電阻會導致低中頻電流流向直接返回路徑與頂部導線正下方之間的某處(右圖)。不過,即使頻率低至 1-2 MHz,返回路徑也是接近頂部走線的下方。


      如何避免布局問題?一旦了解電流在接地層中的返回路徑,就可以找出并糾正常見布局問題。例如在圖4 中,路徑 A 被認定是關鍵路徑,應當保持最短,遠離數字線路,并且不得有過孔。路徑 B 不那么重要,但需要穿過路徑 A。通常是切開路徑 A 下面的接地層,然后經過兩個過孔并在路徑 A 下方布設路徑 B。


      但結果令人遺憾,兩個信號的接地回路中均引入了電感,因為中斷的接地層使兩條環路的面積均變得更大。路徑 A 傳導高頻信號,因此接地層的開口上將出現感應壓降。對于典型的 ECL或 TTL 信號,此壓降可能大于數百毫伏,足以嚴重影響 12 位、10 MHz 轉換器或 8 位、20-MHz 轉換器的性能。簡單的補救方法是在接地層的切口上添加一根導線,使環路面積保持較小。
      電源干擾是另一個值得關注的問題。電源線的特性阻抗必須盡可能低。為使此比值較小,需要使接地層始終位于電源線下方,以便降低電感并提高電容。有選擇地將旁路電容放在關鍵位置上,可以進一步提高電容。如果只顧及到電容,例如將 0.1 μF 電容放在電源引腳上以降低其阻抗,則電感為 30 nH 的電源線在每次瞬變之后將具有大約 3MHz 的阻尼振蕩。



      德州安盾電子有限公司是專業從事科研、生產、銷售防電磁輻射產品的高新技術公司,公司以清華大學、北京航空航天大學為技術后盾。
      • 安盾電子
      • 0534-2188619/18653491103
        13365348615/18653461103/17615965972
      • sdandun@163.com
      • 德州市經濟技術開發區晶華路3376號
      国产精品久久精品这里只有_一本精品99久久精品77_久久五月天网站止免费观看_免费A级毛片高清无码
      <b id="9makf"></b>
      <u id="9makf"><address id="9makf"></address></u>
    1. <source id="9makf"><mark id="9makf"><div id="9makf"></div></mark></source>
      <var id="9makf"></var>

      <b id="9makf"><p id="9makf"></p></b>